
ECE 604, Lecture 20

November 8, 2018

In this lecture, we will cover the following topics:

• Radiation of Electromagnetic Fields

• Radiation or Far-Field Approximation

• Linear Array of Dipole Antennnas

• When is the Far-Field Approximation Valid?

Additional Reading:

• Sections 12.1 - 12.7 of Ramo, Whinnery, and Van Duzer.

• Sections 5.2, 5.3, 5.4, 6.1D J.A. Kong, Electromagnetic Wave Theory.

• Lectures 25, 26, and 27, ECE 350X.

You should be able to do the homework by reading the lecture notes alone.
Additional reading is for references.

Printed on November 15, 2018 at 17 : 33: W.C. Chew and D. Jiao.
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1 Radiation of Electromagnetic Fields

Electromagnetic fields are used for communications, sensing, wireless power
transfer applications, and many more. Hence, it is imperative to understand
how electromagnetic fields radiate from sources. The fundamental reason for
the radiation of electromagnetic sources is the acceleration of electric charges
associated with the electric currents.

To this end, wee will start with frequency domain Maxwell’s equations with
sources J and % included, and see how these sources J and % can radiate elec-
tromagnetic fields. Maxwell’s equations in the frequency domain are

∇×E = −jωµH (1.1)

∇×H = jωεE + J (1.2)

∇ · µH = 0 (1.3)

∇ · εE = % (1.4)

In order to satisfy the third Maxwell’s equation, we let

µH = ∇×A (1.5)

Since ∇ · (∇×A) = 0, the third equation will be automatically satisfied. Now,
using (1.5) in (1.1), we have

∇× (E + jωA) = 0 (1.6)

Since ∇× (∇Φ) = 0, the above implies that

E = −jωA−∇Φ (1.7)

Hence, the above shows that A and Φ uniquely determine the fields E and H.1

To this end, we derive expressions for A and Φ in terms of the sources J and %
which are given. Substituting (1.5) and (1.7) into (1.2) gives

∇×∇×A = −jωµε(−jωA−∇Φ) + µJ (1.8)

or upon rearrangement, after using that ∇ × ∇ ×A = ∇∇ ·A − ∇ · ∇A, we
have

∇2A + ω2µεA = −µJ + jωµε∇Φ +∇∇ ·A (1.9)

Using (1.7) in (1.4), we have

∇ · (jωA +∇Φ) = −%
ε

(1.10)

In the above, (1.9) and (1.10) represent two equations for the two unknowns
A and Φ, expressed in terms of the known quantities, the sources J and %

1Notice that when ω = 0, the above reduces to the previous definition of scalar potential
for electric field.
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which are given. But these equations are coupled to each other, and are rather
difficult to solve at this point. Furthermore, in (1.5), we can add a gradient
term to A, and then H remains invariant. In other words, A′ = A +∇Ψ, and
µH = ∇×A = ∇×A′.

To make E invariant, we can let

Φ′ = Φ− jωΨ (1.11)

Therefore, the pair of A and Φ that determines H and E are not unique.
To make them unique, in addition to specifying what ∇ ×A should be in

(1.5), we need to specify its divergence. One way is to specify

∇ ·A = −jωµεΦ (1.12)

The above is judiciously chosen so that the pertinent equations will be simplified.
Then using the above in (1.9) and (1.10), they become

∇2A + ω2µεA = −µJ (1.13)

∇2Φ + ω2µεΦ = −%
ε

(1.14)

Equation (1.12) is known as the Lorenz gauge. Not only are the equations sim-
plified, they can be solved independently of each other since they are decoupled
from each other.

Equations (1.13) and (1.14) can be solved using the Green’s function method.
They together constitute four scalar equations similar to each other. Hence, we
need only to solve their point-source response, or the Green’s function of these
equations by solving

∇2g(r, r′) + β2g(r, r′) = −δ(r− r′) (1.15)

where β2 = ω2µε. In Lecture 5, we have shown that when β = 0,

g(r, r′) = g(r, r′) =
1

4π|r− r′|

When β 6= 0, the correct solution is

g(r, r′) = g(r− r′) =
e−jβ|r−r

′|

4π|r− r′|
(1.16)

which can be verified by back substitution. By using the principle of linear
superposition, or convolution, the solutions to (1.13) and (1.14) are then

A(r) =
µ

4π

˚
dr′

J(r′)

4π|r− r′|
e−jβ|r−r

′| (1.17)

Φ(r) =
1

4πε

˚
dr′

%(r′)

|r− r′|
e−jβ|r−r

′| (1.18)
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2 Radiation Field or Far-Field Approximation

Figure 1:

The integrals in (1.17) and (1.18) are normally untenable, but when the obser-
vation point is far from the source, approximation to the integral can be made
giving it a nice physical interpretation. When |r| � |r′|, then |r−r′| ≈ r−r′ · r̂,
where r = |r| and r′ = |r′|. Thus (1.17) previously derived becomes

A(r) ≈
˚

V

dr′
µJ(r′)

r − r′ · r̂
e−jβr+jβr

′·r̂ ≈ µe−jβr

4πr

˚
V

dr′J(r′)ejβr
′·r̂ (2.1)

In the above we have made used of that 1/(1 − ∆) ≈ 1 when ∆ is small, but
ejβ∆ 6= 1, unless jβ∆ � 1. Hence, we keep the exponential term in (2.1) but
simplify the denominator to arrive at the last expression above.

If we let βββ = βr̂, and r′ = x̂x′ + ŷy′ + ẑz′, then

ejβr
′·r̂ = ejβββ·r

′
= ejβxx

′+jβyy
′+jβzz

′
(2.2)

Therefore (2.1) resembles a 3D Fourier transform integral, namely

A(r) ≈ µe−jβr

4πr

˚
V

dr′J(r′)ejβ·r
′

(2.3)

and (2.3) can be rewritten as

A(r) ∼=
µe−jβr

4πr
F(βββ) (2.4)

where F(βββ) is the 3D Fourier transform of J(r′) with β = r̂β.
This is not a normal 3D Fourier transform because |β|2 = βx

2 +βy
2 +βz

2 =
β2. In other words, the length of the vector β is fixed to be β. It is the 3D
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Fourier transform of the current source J(r′) with Fourier variables, βx, βy, βz
lying on a sphere of radius β and βββ = βr̂. This spherical surface in the Fourier
space is also called the Ewald’s sphere.

We can write r̂ or βββ in terms of direction cosines in spherical coordinates or
that

r̂ = x̂ cosφ sin θ + ŷ sinφ sin θ + ẑ cos θ (2.5)

Hence

F(βββ) = F(βr̂) = F(β, θ, φ) (2.6)

Also in (2.4), when r � r′ · r̂, e−jβr is now a rapidly varying function of r while,
F(βββ) is only a slowly varying function of θ and φ, the observation angles. Hence,
we can write e−jβr = e−jβββ·r where βββ = r̂β and r = r̂r so that a spherical wave
resembles a plane wave locally. Then, it is clear that ∇ → −jβββ = −jβr̂, using
the plane-wave approximation, and

H =
1

µ
∇×A ≈ −j β

µ
r̂ × (θ̂Aθ + φ̂Aφ) = j

β

µ
(θ̂Aφ − φ̂Aθ) (2.7)

Similarly

E =
1

jωε
∇×H ∼= −jω(θ̂Aθ + φ̂Aφ) (2.8)

The above shows that in the far field, the wave radiated by a finite source
resembles a spherical wave. Moreover, a spherical wave resembles a plane wave
when one is sufficiently far from the source. Notice that β = βr̂ is orthogonal
to E and H in the far field, a property of a plane wave.

Hence, it can be shown that in the far field, using the plane-wave approxi-
mation,

|E|/|H| ≈ η (2.9)

where η is the intrinsic impedance of free space, which is a property of a plane
wave. Moreover, one can show that the time average Poynting’s vector in the
far field is

〈S〉 ≈ 1

2η
|E|2r̂ (2.10)

which resembles also the property of a plane wave. Since the radiated field is a
spherical wave, the Poynting’s vector is radial. Therefore,

〈S〉 = r̂Sr(θ, φ) (2.11)

The plot of |E(θ, φ)| is termed the far-field pattern or the radiation pattern of an
antenna or the source, while the plot of |E(θ, φ)|2 is its far-field power pattern.
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Once the far-field power pattern Sr is known, the total power radiated by
the antenna can be found by

PT =

ˆ π

0

ˆ 2π

0

r2 sin θdθdφSr(θ, φ) (2.12)

The above evaluates to a constant independent of r due to energy conservation.
Now assume that this same antenna is radiating isotropically in all directions,
then the average power density of this fictitious isotropic radiator as r →∞ is

Sav =
PT

4πr2
(2.13)

A dimensionless directive gain pattern can be defined such that

G(θ, φ) =
Sr(θ, φ)

Sav
=

4πr2Sr(θ, φ)

PT
(2.14)

The above function is independent of r in the far field since Sr ∼ 1/r2 in the far
field. The directivity of an antenna D = max(G(θ, φ)), is the maximum value
of the directive gain.

An antenna also has an effective area or aperture, such that if a plane wave
carrying power density denoted by Sinc impinges on the antenna, then the power
received by the antenna, Preceived is given by

Preceived = SincAe (2.15)

A wonderful relationship exists between the directive gain pattern G(θ, φ) and
the effective aperture, namely that2

Ae =
λ2

4π
G(θ, φ) (2.16)

Therefore, the effective aperture of an antenna is also direction dependent.

3 Linear Array of Dipole Antennas

Antenna array can be designed so that the constructive and destructive inter-
ference in the far field can be used to steer the direction of radiation of the
antenna, or the far-field radiation pattern of an antenna array. A simple linear
dipole array is shown in Figure 2.

2The proof of this formula is beyond the scope of this course.
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Figure 2:

First, we assume that this is a linear array of Hertzian dipoles (see ECE
350X for the definition of a Hertzian dipole),

J(r′) = ẑIl[A0δ(x
′) +A1δ(x

′ − d1) +A2δ(x
′ − d2) + · · ·

+AN−1δ(x
′ − dN−1)]δ(y′)δ(x′) (3.1)

The vector potential on the xy-plane in the far field is derived to be

A(r) ∼= ẑ
µIl

4πr
e−jβr

˚
dr′[A0δ(x

′) +A1δ(x
′ − d1) + · · · ]δ(y′)δ(x′)ejβr

′·r̂

= ẑ
µIl

4πr
e−jβr[A0 +A1e

jβd1 cosφ +A2e
jβd2 cosφ + · · ·+AN−1e

jβdN−1 cosφ

(3.2)

In the above, we have assumed that the observation point is on the xy plane,
or that r = ρ = x̂x + ŷy. Also, the sources are aligned on the x axis, or that
r′ = x̂x′, and r′ · r̂ = x′ cosφ.

If dn = nd, and An = ejnψ, then the antenna array, which assumes a pro-
gressively increasing phase shift between different elements, is called a linear
phase array. Then (3.2) in the above becomes

A(r) ∼= ẑ
µIl

4πr
e−jβr[1 + e−j(βd cosψ+φ) + e−j2(βd cosφ+ψ) + · · ·

+e−j(N−1)(βd cosφ+ψ)] (3.3)

The above can be summed in closed form using

N−1∑
n=0

xn =
1− xN

1− x
(3.4)

Then in the far field,

A(r) ∼= ẑ
µIl

4πr
e−jβr

1− ejN(βd cosφ+ψ)

1− ej(βd cosφ+ψ)
(3.5)
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Since on the xy plane, Eθ = −jωAθ = jωAz. Then,

|Eθ| = |E0|
∣∣∣∣1− ejN(βd cosφ+ψ)

1− ej(βd cosφ+ψ)

∣∣∣∣
= |E0|

∣∣∣∣∣ sin N
2 (βd cosφ+ ψ)

sin 1
2 (βd cosφ+ ψ)

∣∣∣∣∣ (3.6)

The above can be used to plot the far-field pattern of an antenna array (see
ECE 350X notes).

Figures 3 and 4 show some radiation patterns from different array designs.
The radiation patterns can be changed by adjusting the spacings of the elements
as well as the phase shift between them. The direction along the axis of an array
is the “endfire” direction, while the direction orthogonal to the axis is known
as the “broadside” direction. The radiation patterns have “lobes” as shown.
The idea of antenna array design is to make the main lobe of the pattern to be
much higher than the side lobes so that the radiated power of the antenna can
be directed along the main lobe or lobes rather than the side lobes. So side-lobe
level suppression is an important goal of designing a highly directive antenna
design.

Figure 3:
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Figure 4:

4 When is Far-Field Approximation Valid?

In making the far-field approximation in (2.1), it will be interesting to ponder
when the far-field approximation is valid? That is, when we can approximate

e−jβ|r−r
′| ≈ e−jβr+jβr

′·r̂ (4.1)

This is especially important because when we integrate over r′, it can range
over large values especially for a large array. To answer this question, we need
to study (4.1) more carefully. First, we have

|r− r′|2 = (r− r′) · (r− r′
2
) = r2 − 2r · r′ + r′

2
(4.2)

We can take the square root of the above to get

|r− r′| = r

(
1− 2r · r′

r2
+
r′

2

r2

)1/2

≈ r

[
1− r · r′

r2
+

1

2

r′
2

r2
− 1

2

(
r · r′

r2

)2

+ · · ·

]

= r − r̂ · r′

r
+

1

2

r′
2

r
− 1

2

(r · r′)2

r3
+

= r − r · r′ + 1

2

r′
2

r
− 1

2r
(r̂ · r′)2 + · · · (4.3)
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In the above, binomial expansion or Taylor series expansion have been used in
making the approximation in the second line. The last two terms in the last
line are of the same order. Moreover, their sum is bounded by r′

2
/(2r) since

r̂ · r′ is always less than r′. Hence, the far field approximation is valid if

β
r′

2

2r
� 1 (4.4)

In the above, β is involved because the approximation has to be valid in the
exponent, namely exp(−jβ|r− r′|). Consequently, we need that

r � π

λ
r′

2
(4.5)

If the aperture of the antenna is of radius W , then r′ < rmax
′ ∼= W and the far

field approximation is valid if

r � π

λ
W 2 = rR (4.6)

If r is larger than this distance, then a focus antenna beam behaves like a
spherical wave and starts to diverge. This distance rR is also known as the
Rayleigh distance.

Hence, when a source radiates, the radiation field is divided into the near
zone, the Fresnel zone, and the far zone (also known as the Fraunhofer zone
in optics). The Rayleigh distance is the demarcation boundary between the
Fresnel zone and the far zone. The larger the aperture of an antenna array is,
the further one has to be to reach the far zone of an antenna. This distance
becomes larger too when the wavelength is short. In the far zone, the far field
behaves like a spherical wave, and its radiation pattern is proportional to the
Fourier transform of the current.
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